RESEARCH AND OBSERVATIONS SUPPORT THE EXISTENCE OF A CRANIOSACRAL SYSTEM

by JOHN E. UPLEDGER, D.O., O.M.M.

© 2003 by UI Enterprises

J. E. Upledger, D.O., O.M.M., is a Certified Fellow of the American Academy of Osteopathy, an Academic Fellow of the British Society of Osteopathy, and a Doctor of Science, Medicina Alternativa. He is the Medical Director of The Upledger Institute, Inc., a center dedicated to continuing education, research and clinical services in Palm Beach Gardens, Florida.

Abstract

CranioSacral Therapy is a gentle, noninvasive, hands-on treatment modality that is said to enhance self-healing abilities as well as provide symptomatic relief from a wide variety of dysfunctions and disabilities. The treatment system is dependent upon the existence of a newly discovered physiological system that has become known as the craniosacral system.

In the present article, the author has reviewed much of the theoretical background and research that support the existence of the craniosacral system. The research summarized here represents work in which the author has either personal knowledge or involvement.

The author concludes that positive patient outcomes as a result of CranioSacral Therapy should weigh greater than data from designed research protocols involving human subjects, as it is not possible to control all of the variables of such studies.

Key words: CranioSacral Therapy, craniosacral system, Pressuressat Model.

CranioSacral Therapy is a gentle, hands-on system of treatment that is rapidly gaining wider usage and acceptance. The basis of CranioSacral Therapy lies in the existence of a craniosacral system. This physiological system is newly discovered and, as such, its existence is frequently called into question.

As one who is considered a leading proponent of the use of CranioSacral Therapy and who has been deeply involved in researching the craniosacral system, I feel qualified to present the following summary of the research that has been done to provide a better understanding of the craniosacral system and its implications in human health and dysfunction. Research aside, countless numbers of patients who have achieved improved health through CranioSacral Therapy will attest to the validity of the modality.

First, I will list some of the work in which I was not directly involved, but which has been brought to my attention either by the researchers themselves or by other colleagues with whom I am acquainted. Then I will recount some of the work in which I have been personally involved.

Research In Which I Had No Direct Involvement

1. Recording of Cranial Rhythmic Impulse
 Milicen Tettambel, D.O., et al.
 Journal of the American Osteopathic Association, Volume 78, October 1978, Page 149

Dr. Tettambel used force transducers, one taped across the frontal bone and one across each of the two mastoid processes of the temporal bones, on 30 subjects ranging in age from 16 to 71 years.

She successfully recorded three separate rhythms on all of these subjects. The cardiac pulses and the respiratory rhythms were clearly recorded. A third pulse was also recorded at an average of 8 cycles per minute. She presumed that the third rhythm represented the cranial rhythmic impulse.
2. Louis Rommeveaux, D.O.
 Personal Communication
 Grenoble, France

 He informed me by personal letter that he employed an electronic engineer to build a device that he mounted on 48 different subjects. The device was attached longitudinally with one end taped to the skin over the glabella and the other end to the skin over the nasal bones. His device measured and recorded movement between its two attachments.

 Rommeveaux stated that significant rhythmical movement was recorded on all 48 subjects at rates between 5 and 10 cycles per minute.

 He also stated that he monitored craniosacral activity on 36 patients in the hospital at the time they were given peridural anesthesia. He stated that his perception was that the craniosacral rhythm underwent a complete stop at exactly the time the anesthetic injection commenced. The halt in rhythm persisted for about five minutes before it began again.

 This latter work is subjective and will be disregarded by some. However, those of us who do CranioSacral Therapy have learned to trust our hands and so may give his impressions credence. For me, this trust of my senses began while I was a research fellow in biochemistry. My mentor, Stacy F. Howell, Ph.D., convinced me that when the laboratory findings did not confirm my physical findings with a given patient, I should suspect laboratory error and trust what I hear, see and/or feel.

3. A Study of Rhythmic Motions of the Living Cranium
 Viola M. Frymann, D.O.
 Journal of the American Osteopathic Association, Volume 70, No. 9, May 1971

 Dr. Frymann and a mechanic devised equipment that was intended to measure and record circumferential changes of the head as well as cardiac and respiratory rhythms. She successfully demonstrated a third rhythm that appeared to be independent of heart rate and breathing activity. She interpreted this third rhythm, which ranged between 6 and 12 cycles per minute, to be the activity of the craniosacral system.

4. Studies of the Structures and Mechanical Properties of the Cranium
 Jean-Claude Herniou, D.O., Ph.D.

 This work was Herniou's doctoral thesis at the Université de Technologie de Compiègne in Paris, France. Herniou practices in Paris. He visited me while I was still in the Biomechanics Department at Michigan State University, College of Osteopathic Medicine. He also attended several of the seminars I presented in France. I have a copy of his thesis in French.

 In brief, Dr. Herniou was able to apply equipment that measured the piezo-electric changes across the sagittal sutures in live sheep. His work showed a rhythmical opening and closing of these sutures at an average rate of 12 cycles per minute. The range of motion never exceeded 1 millimeter. This work was carefully scrutinized for its scientific merit by Herniou's doctoral committee.

5. Ultrasonic Measurement of Intra-Cranial Pulsations at 9 Cycles Per Minute
 Wallace, Avant, McKinney and Thurstone at Winston-Salem, North Carolina
 Journal of Neurology, 1975

 The investigators reported an apparently independent 9-cycle-per-minute intracranial pulsation observed by ultrasound in the brain and membrane tissues of a human subject.

6. Modulation Resembling Traube-Hering Waves
 Recorded in Human Brain
 Jenkins, Campbell and White
 European Neurology, 5:1-6, 1971

 Ultrasound echo pulsations were observed at 7 cycles per minute in a healthy human subject. These pulsations continued without change when the subject held his breath.

 Traube-Hering pulsations are usually measured on the ear. When the investigators observed the Traube-Hering pulsations on the ear they differed significantly from the 7-per-minute pulsations of the brain. The authors conclude that the 7-per-minute brain pulsations are autonomous and not related to cardiac, respiratory and/or Traube-Hering pulsations.

7. Dysfunctioning of the Fluid Mechanical Cranio Spinal Systems as Revealed by Stress/Strain Diagrams
 K. Lever Allen, M.D., Neurosurgeon
 E.A. Bunt, M.D., Neurosurgeon

 Drs. Allen and Bunt both practice neurosurgery in Johannesburg, South Africa. The above paper was presented by Dr. Bunt at the 1979 International Conference on Biomechanics and Biophysics in Jerusalem. I presented the Pressurestat Model as the driving force for craniosacral motion at this same conference. After my lecture, Dr. Bunt personally invited me to attend his presentation and have a conversation afterward. At his presentation and in our subsequent discussion, Dr. Bunt informed me that during his search for the etiology of idiopathic hydrocephalus, he did several tomographic studies of the skull, the brain, and the brain's ventricular system.

 In his tomographic studies of the ventricular system, the image cut was such that it gave a two-dimensional display of the lateral and third ventricles. He noted that there was a rhythmical dilation and contraction activity with a range of about 40% in the area seen on the tomograms. In a normal adult woman, the rate of the rhythmical ventricular change was 8 cycles per minute. In a child with idiopathic hydrocephalus, the rate of ventricular cyclic changes was 4 cycles per minute and irregular. During our private conversation, Dr. Bunt ventured to say that he intuited that the cause for idiopathic hydrocephalus might be found in the sagittal suture or the sagittal venous sinus. He further stated that the Pressurestat Model that I had presented made perfect sense to him and fit in with his observations as a neurosurgeon. This last part is conjecture but I choose not to discount Dr. Bunt's 20-plus years of experience as a neurosurgeon just because he has not done a controlled study. This is my own bias: I respect human intelligence more than I respect experimental design and instrumental measurements. I subscribe to the Heisenberg principle. In fact, Jon D. Vredevoogd and I have witnessed it in action.
This caused us to discard a rather large quantity of data from electrical measurements that we had made on autistic children.

8. Roentgen Findings in the CranioSacral Mechanism
 Philip E. Greenman, D.O.
 Journal of the American Osteopathic Association, 70:1, September 1970

 X-ray studies of the relationships between the sphenoid body and the basiocciput were done on 25 patients by Dr. Greenman. He was able to show abnormal relationships between these bones that demonstrated the lesions defined by Sutherland as flexion, extension, torsion, sidebending, vertical strain and lateral strain. No correlation was attempted with clinical symptoms. Therefore, the x-ray findings could represent anatomical variants as well as abnormal findings.

9. Changes in Magnitude of Relative Elongation of the Falx Cerebri During the Application of External Forces on the Frontal Bone of an Embalmed Cadaver
 Dimetrios Kostopoulos, M.A., P.T
 George Keramidas
 Journal of Craniofacial Practice, January 1992

 This work was carried out by the investigators at the New York University Anatomy Laboratory. The investigators made use of instrumentation that measured piezo-electric changes related to distance changes in the falx cerebri in response to measured anteriorly directed traction on the frontal bone. Results showed that an elastic response began at 140 grams frontal bone traction. At 64 grams the elastic response ended and viscous changes began. At 62 grams of frontal bone traction the falx cerebri elongated 1.097 mm within the 5 cm distance spanned by the measuring device.

10. The Effects of Cranial Manipulation Upon Ryodoraku Acupuncture Meridians
 Robert Chadwick, D.O.

 This is a piece of unpublished work that was turned in to me as part of the required research experience by a graduate student at Michigan State University.

 Dr. Chadwick used the classical Japanese Ryodoraku electrical measurement methods to evaluate acupuncture meridian millivolts before and after the application of CranioSacral Therapy. Dr. Chadwick found that on 10 patients, with the exception of CranioSacral Therapy, moved all meridian imbalances toward the desired balance.

11. Measurement of Accuracy in the Bimanual Perception of Motion
 Richard M. Roppel, Ph.D., Norman St. Pierre, B.S.,
 Fred L. Mitchell, Jr., D.O.

 Dr. Roppel, et al., designed and built an artificial device similar to an open clam shell in which the two halves were moved by controlled plungers in order to roughly mimic parietal bone motion as it is hypothesized in CranioSacral Therapy in the human skull.

 Dr. Roppel created 10 different computer programs that were applied to the plungers, thus moving the artificial parietal bones according to variations in motion pattern, motion amplitude, symmetry and asymmetry of motion, rate per minute, and speed of motion programs. The mock-up was then covered with quarter-inch-thick foam rubber in order to simulate the scalp tissues that cover human skull bones.

 With their hands in place on the mock-up, the examiners made voice recordings of their motion perceptions into a recorder that was synchronized with the computer-governed motion programs. The purpose was to discover the thresholds of manually perceptible motion of the simulated parietal bones through the foam cover.

 Dr. Roppel's reported conclusions were:

 1. Accuracy of perception was inversely related to time delay in reporting. This suggested that the longer the examiner thought about a perception, the less likely he would render a correct report.
 2. The more rapidly the simulated parietal bones moved, the more accurate the reports of the perceived motion would be.
 3. Examiners could detect movement of between 0.25 and 0.50 millimeters with 85% accuracy.
 4. Some laypersons (secretaries in the Biomechanics Department) gave more correct responses than did M.D. and D.O. students and faculty.

12. Parietal Bone Mobility in the Anesthetized Cat
 Thomas Adams, Ph.D., et al.
 Journal of the American Osteopathic Association, Volume 92, Number 5, May 1992

 Dr. Thomas applied strain gauges across the surgically exposed sagittal sutures in living cats. He recorded rhythmic motion across the sutures with the cats at rest that differed from cardiovascular and respiratory activity. Externally applied stimuli did not significantly change the suture activity. The rates of suture movement averaged 11 cycles per minute.

13. Right Brain, Left Brain Asymmetry
 Norma J. Gilmore, Ed.D.
 ACLJ Newsbriefs, July-August 1982

 Dr. Gilmore performed the Upledger-designed 10-Step CranioSacral Therapy Protocol on 20 learning-disabled children once weekly for six weeks. She reports that all 20 learning-disabled children improved from below average to either average or good in their reading skills over the six-week period.

 Dr. Gilmore has had no medical or pre-medical training. She learned to apply the 10-Step Protocol by rote. She is living proof that, when properly taught, CranioSacral Therapy can be applied effectively to needy children by a person who lacks any type of healthcare background. Dr. Gilmore performed the CranioSacral Therapy as "Upledger Relaxation Technique."

14. Relation of Disturbances of Craniosacral Mechanisms to Symptomatology of Newborns: Study of 1,250 Infants

John E. Upledger, D.O., O.M.M.
Dr. Frymann evaluated 1,250 newborn infants, focusing on craniosacral system function. She found that both respiratory and circulatory symptoms correlated to abnoraml sphenobasilar syndromenosis torsion accompanied by temporal bone dysfunc- tion and immobility. Frymann states that symptoms abated when CraniSacral Therapy was used to correct the sphenobasilar torsion, and mobilize and balance the temporal bones.

Dr. Baker built a device that measured the width of the maxillary arch by attaching to the second upper molars. His work demonstrated a 9-cycle-per-minute average of a rhythmical 1.5 millimeter average variance in maxillary arch width on one patient.

4. The Colorado Board of Medical Examiners vs. W.M. Raemer, D.D.S.
Court of Appeals, State of Colorado,
Case No. 87CA1589
March 22, 1990

The unanimous ruling of the Appellate Court in favor of W.M. Raemer, D.D.S., states that CranioSacral Therapy is an effective form of treatment for TMJ dysfunction. As such, it was ruled that dentists in Colorado are allowed to use CranioSacral Therapy for treatment within the scope of their practices.

Research In Which I Was Personally Involved

My involvement in the development of CranioSacral Therapy began in 1970. Since that time I have worked at one time or another rather closely and intensely with Ernest W. Retzlaff, Ph.D. (physiology), Richard W. Roppel, Ph.D. (biophysics), and Zvi Karni, Ph.D. (biophysics) and D.Sc. (bioengineering). Jon Vredevoogd, M.F.A., with whom I co-authored the first textbook on CranioSacral Therapy, is a problem-solving designer who works as a professor in the Architectural Design Department at Michigan State University. The other three researchers were all members of the Department of Biomechanics.

I shall describe my work in the field of CranioSacral Therapy and its development in a chronological manner so you can see how one step built upon the next.

1970 — I saw the craniosacral system in action firsthand while serving as assistant on a neurosurgical procedure. I saw the intact dura mater at the mid-cervical level bulge and retract rhythmically at the operative site as the volume of cerebrospinal fluid that it contained increased and decreased 8 times per minute. No one in the operating room could answer the questions that this observed activity posed. The 8-cycles-per-minute rhythm was different from the breathing of the patient as observed in the breathing apparatus he was connected to, and it was far different from the heartbeat as seen on the monitor.

1972 — I attended a five-day course on cranial osteopathy sponsored by the Cranial Academy. I felt the rhythm I had seen in 1970 with my own hands on both the skull and the sacrum of at least 10 different classmates. I could also feel this rhythm in my own head and pelvis while they were being palpated by other students and faculty.

I had the advantage of having actually seen the system in action about which the teachers were offering hypotheses and conjecture. Now my problem was whether I should believe my eyes, my memory of what my eyes had seen, my senses of touch and proprioception in my hands and my sense of motion in my own head and pelvis, or whether I should believe Gray's Anatomy, the "bible" from which I had been taught. Gray's said
that what I was feeling was impossible. My own sensory systems said that Gray's was in error. I chose to trust myself.

1972-1975 — I developed my palpation skills and confidence by trying various methods of manipulating and connecting with what we would one day call the craniosacral system. A neurosurgeon friend, Dr. James Tyler, allowed me to scrub with him several times as assistant, and to practice my hands-on techniques on his first-day, post-operative brain surgery patients. Dr. Tyler felt that the work I was doing with his patients decreased both their morbidity and their recovery time. I also did a lot of work combining the cranial manipulation techniques with acupuncture for Dr. Tyler's intractable pain patients. I found that what we would come to name CranioSacral Therapy was very effective in trigeminal neuralgia, a wide variety of headaches, visual disturbances and strabismus, transient cerebral ischemia, vertigo and dysequilibria problems, and in some cases of "mental retardation."

July 1975 — I joined the faculty at Michigan State University, College of Osteopathic Medicine, as a clinician-researcher in the Department of Biomechanics.

1975-1980 — I worked with Dr. Retzlaff on the histology of cranial sutures. Using tissues from living patients ages 7 through 57, we found that the capability for motion was present within the suture. The suture contains an abundance of collagen and elastic fiber, vascular networks that communicate with the Haversian Canals of the bone and nonmyelinated nerve fibers and receptors. Sutures from living patients were not calcified as was the belief of anatomists. The appearance of calcification came post-mortem and with the use of preservative chemicals.

The publications that resulted from this work are:

1975 — Unpublished work with Ropell and Retzlaff involved the use of live monkeys. I made two small incisions through the scalp of an anesthetized monkey over each parietal bone equidistant from the sagittal midline. One antenna was mounted in an analogous position on the external periosteal surface of each parietal bone. Dr. Ropell then broadcast a radio signal across the two antennae, the frequency of which varied with the distance between the two antennae. Using this setup, we were able to record a separate craniosacral motion in the anesthetized monkey that was different in cyclic rate than either the recorded breathing or the heart rate.

I was able to interrupt the craniosacral rhythmical activity by applying slight pressure with one finger to the monkey's coccyx. We repeated this experiment on three different monkeys. The craniosacral rhythm of the monkeys fluctuated between 8 and 10 cycles per minute. All craniosacral activity on all three monkeys was interruptible by the aforementioned coccygeal placed finger-tip pressure.

Clinically, I began to apply this concept to headache patients. A significant number of headaches could be commenced by coccygeal pressure in an anterior direction and relieved by moving the coccyx posteriorly.

1976 — As we continued the basic science work with sutures and membranes, I decided that I should begin the pursuit of the clinical application of CranioSacral Therapy. I had done significant work with children prior to moving to Michigan State University, so I decided to begin with an interrater reliability study with nursery school children. I designed a 19-parameter hands-on standardized evaluation tool that would be used to evaluate these children by three other examiners and myself.

Twenty-five nursery school children were examined on each of the 19 parameters. The parameters did not include the rate or the amplitude of the craniosacral rhythm because we knew then, as we know now, that rate and amplitude are variable with examiner touch, intention, sharing of energy and spontaneous still points. We were looking for agreement or disagreement on significant restricted areas of the craniosacral system and its sutures.

Our parameters were as follows:

Occiput

1. Right restriction of motion
2. Left restriction of motion

Temporal Bones

3. Right restriction of motion
4. Left restriction of motion

John E. Upledger, D.O., O.M.M.
Sphenobasilar Joint

5. Restriction toward flexion
6. Restriction toward extension
7. Sidebending rotation restriction toward right
8. Sidebending rotation restriction toward left
9. Torsion restriction toward right
10. Torsion restriction toward left
11. Compression/decompression restriction
12. Lateral strain restriction toward right
13. Lateral strain restriction toward left
14. Vertical strain restriction toward right
15. Vertical strain restriction toward left

Sacrum

16. Restriction toward flexion
17. Restriction toward extension
18. Restriction toward right torsion
19. Restriction toward left torsion

The rating system employed is as follows:

1. Easy or "normal" response to induced passive motion
2. Moderate or transient restriction to induced passive motion
3. Severe or complete restriction to induced passive motion

Increments of 0.5 were allowed on the rating scale.

Dr. Mitchell examined six of the children I examined. This means that we mutually evaluated 114 parameters of motion. At no allowance for variance, we agreed on exactly 74 out of 114 parameters, and on 84 out of 114 parameters at 0.5 rating variance allowed.

In the aggregate at zero allowance for rating variance, we agreed 71% of the time, and 85% of the time if we allow a 0.5 rating variance. One of the parameters that reduced our percent of agreement significantly was left sacral torsion. Mitchell and I agreed here only 17% of the time.

The purpose of this work was to evaluate agreement/disagreement on clinically significant restrictions. We had seen and felt the craniosacral system's activity; we knew of its existence. In my judgment the research showed that skilled craniosacral clinicians could find significant restrictions in the craniosacral system and that these restrictions are real. We did count cranial rhythmic impulses as well as heart and respiratory rate, but we only counted each for 15 seconds and multiplied by 4 to get the rates per minute. We counted and recorded these rates on each therapist and child before the evaluation began.

In the interest of science or experimental design, all of the evaluators were blind to the others' findings. All rating data were reported directly to a technician who recorded these reported findings on standard forms. The technician asked for each parameter rating as it appeared on the form. In this way all examiners followed the same examination sequence.

Once all the children were evaluated, the raw data were given directly to Eric Gordon, Ph.D., an independent statistician. None of the examiners were privileged to see the data before Dr. Gordon performed his treatment, analysis and organization of the raw numbers.

Dr. Feely was Clinical Associate Professor of Family Medicine at the Chicago College of Osteopathic Medicine at the time. He also chose to publish another of our research articles in that volume. The article, summarized here, is "Mechanoelectric Patterns During Craniosacral Diagnosis and Treatment" by John E. Upledger, D.O., and Zvi Karni, Ph.D., D.Sc. This work was published originally in the Journal of the American Osteopathic Association, Volume 76, in July 1979.

I used the aforementioned reproducibility work as a stepping stone toward the next research that I conducted as the sole examiner of 203 public school children. The 19-parameter standardized evaluation protocol had, in my opinion, proven its worth. The next step was to get into the public school system in order to examine a sample of the students. I obtained the coop-
eration of the principals of three grade schools in Lansing, Michigan. Information and consent forms were sent home to parents with these grade school children on a Monday. By the following Friday, 203 signed consent forms were returned that allowed participation in the research. During the following week, I went into each of the schools for one day each and, using an assigned room, had a portable treatment table set up for the purpose of performing the examination. The same technician who had participated in the previous work was employed to record my orally reported data. A school employee was assigned to have a child lying on the table when I entered the room to do the examination. I did not want to see the children walking, or receive any suggestions from observations of them climbing onto the table, for example. I did not speak to any child before or during the examination. I only thanked each one at the end of the examination.

As in the previously reviewed protocol, the technician guided me through the 19-parameter protocol. Heart rate, respiratory rate and cranial pulse rate were first recorded by counting each for 15 seconds and multiplying by 4 to obtain the rates per minute. Then the 19-step standardized examination was completed.

All the raw data were given to Dr. Gordon, the same statistician employed in the previous study. Dr. Gordon was then privileged to go into the school files and obtain information on each child participant relative to his/her school performance, such as teachers' opinions. From this exploration he developed the categories that were used to correlate with craniosacral system examination findings. The categories derived from the school files by Dr. Gordon were "normal" or "not normal," behavioral problems, motor coordination and speech problems, and learning disabilities. The motor coordination and speech problem category children were all confirmed by the Motor Coordination Clinic located on the Michigan State campus. Fortunately, all children with these problems were seen and treated by this clinic as a part of the University's community service.

Historical data were collected by personal interviews with the parents after the craniosacral examination had been completed. These interviews were conducted by the research technician. From this historical data we developed the following categories for possible correlation with patterns of dysfunction within the craniosacral system. The historical categories decided upon were seizure history, head injury, obstetrical complications and ear problems. Dr. Gordon then performed all data organization and statistical analyses.

The conclusions that emerged after all this combined effort and sincere attempt at rigorous control were:

1. The standardized quantifiable craniosacral motion examination represents a practical approach to the study of relationships between craniosacral system dysfunctions and a variety of health, behavior and performance problems.

2. Our data in general supported school officials' and teachers' classifications of children as "normal" or "not normal."

3. Craniosacral dysfunction scores correlated very positively with classifications of "not normal," behavioral problems, learning disabilities, motor coordination problems and obstetric complications as given by the parent or parents in the patient's history.

4. The highest craniosacral restriction scores correlated most positively with those children suffering from multiple problems as categorized in this study.

The results of this research were published in the Journal of the American Osteopathic Association. Volume 77, June 1978, after rigorous review by three referees. The article is entitled "The Relationship of Craniosacral Examination Findings in Grade School Children with Developmental Problems" by John E. Upledger, D.O., F.A.A.O. Both of these studies on school children have been included in the appendix of our textbook, CranioSacral Therapy, by John E. Upledger and Jon D. Vredevoogd, 1982, available through The Upledger Institute, Inc.

My intention was to follow these two research projects with a controlled study of dyslexic children in East Lansing. We planned to have three groups of 25 children each. The groups would be matched as best we could for age, gender, and severity of disabilities. One group would receive CranioSacral Therapy once a week for one school semester. A second group would receive placebo CranioSacral Therapy in the form of head touching for 15 minutes once a week with no therapist-facilitated correction intended. However, I was well aware of the therapeutic effect of touch, and we would deal with this problem as best we could by reporting spontaneous corrections sequentially on the standardized examination forms that would be completed on every child each week. The third group of children would receive no treatment, no touch, and no special attention from us. All of the children were to be evaluated at the beginning and the end of the semester for their reading skills.

The project was organized, funded and ready to go when it was sabotaged by a young reporter who heard about it. That reporter attended the school board meeting where I was to get the official stamp of approval by the board. He opened discussion about the project and published an article in the morning newspaper headlined "MSU Professor to Use Lansing School Children as Guinea Pigs." That was the end of that project.

Fortunately, we were reassigned by the funding agency to begin research with autistic children at the Genesee County Center for Autism. I will discuss the autistic work a little later. Right now it seems appropriate to bring you up to date with my work as it was carried out with Dr. Karni. At the same time, we opened a University-sponsored clinic for brain-dysfunctioning children that continued from 1977 through my departure from M.S.U. in 1983.

1976-1979 — During one of our regular Biomechanics Department meetings in the summer of 1976, I put forth the request for help from our basic science faculty. I wanted to investigate the possibility that there exists an exchange of energy of some kind between a therapist and a patient during a hands-on CranioSacral Therapy treatment session. Dr. Karni, the biophysicist/bioengineer on loan to us from the Technion Institute in Haifa, Israel, took me up on my request. At first he was very skeptical but as things progressed, Dr. Karni became very enthusiastic about what he was seeing.
The result of our initial work was published as "Mechano-electric Patterns During Craniocasral Osteopathic Diagnosis and Treatment" by John E. Upledger, D.O., F.A.A.O., and Zvi Karni, Ph.D., D.Sc., in the Journal of the American Osteopathic Association, Volume 78, July 1979. As a service to those of you who may be interested, we also included this article in the Appendix of CranioSacral Therapy by Upledger and Vredevoogd.

This work used instrumentation that Dr. Karni custom designed and built. He called it a Modified Wheatstone Bridge. This equipment enabled us to record electrical potential on a polygraph along with ECG and respiratory activity. The latter was recorded by a strain gauge mounted over the anterior diaphragm.

Our concept was that the human body could/should be considered as a bag of electrolyte solution with insulating skin as its boundaries. With this in mind, we placed exploring electrodes on both anterior thighs of subjects, three inches above the superior borders of the patellae, with grounding electrodes ipsilaterally placed on the dorsum of each foot. We left the electrical noise in the recordings. Karni used his creative expertise in physics and engineering to get his Modified Wheatstone Bridge to algebraically add the noise deflections. We then began to see patterns of electrical potential change within patients that correlated to specific craniosacral techniques that I was using at the time. We placed a screen between Karni and his polygraph, on which all of the data were being recorded, and myself with the patient. Soon, from his polygraph tracings, Karni was able to tell me what I was doing with the patient.

We recorded what seemed like miles of polygraph tracings. We saw that breathing was not consistently related to craniosacral system activity. We saw that at the onset of a still point, the heart quite often gave a premature ventricular contraction. We definitely saw that electrical phenomena were related somehow to craniosacral system phenomena in the same body. The most exciting thing for me was the observation that, when I found a point of release in the craniosacral system, the craniosacral rhythmic activity stopped simultaneously with a cessation of patient in-body electrical potential fluctuation. The electrical potential baseline also dropped during this period of release within the craniosacral system. I still believe this is probably our most important finding, although we still do not understand the mechanics of this relationship.

Dr. Karni and I continued through 1978, when he was forced to return to the Technion Institute in Israel. We did strain plethysmography studies on patients. We placed sensitive strain gauges at the mid-forearms and the wrists of patients, which would measure and record on the polygraph circumferential changes in the arm and wrist. The gauges were Peckel's electrical resistance high extension rubber strain gauges, type 20S. They were battery-powered so that there would be no fluctuations in power source. Recordings were done for 20 minutes on each patient.

The gauges reflected the arterial pulse quite clearly. They also showed a cycled pulse of 9 to 10 per minute. This pulse moved from mid-forearms to wrists, usually over a period of about four-tenths of a second. We presumed this to be what we called the craniosacral system's rhythmic activity. We also saw a 3-cycle-per-minute pulse. All three pulses were superimposed upon each other. Rollin E. Becker, D.O., talked about a 3- to 4-cycle-per-minute pulse, mentioned earlier. We wondered if this was it. Dr. Karni and I also did a lot of other exploration related to Kirlian photography, acupuncture points and meridians, and so on.

In Kirlian photographs, we saw definite increases of corona output from patients' fingers resultant of CranioSacral Therapy. This was reported in 1978 to the International Kirlian Society Convention in New York City. We also saw changes in electrical activity in acupuncture meridians resultant to CranioSacral Therapy. Since then, I have often had acupuncturists evaluate the pulses and monitor the changes that occur as I do CranioSacral Therapy. Clearly, the system of acupuncture meridians and energies are often favorably influenced by CranioSacral Therapy.

In late 1978, Dr. Karni returned to Israel for political reasons. He then arranged a visiting professorship for me in the summer of 1979 at the Technion Institute in Haifa. It was also agreed that I would work at the Loewenstein Hospital, a neurological institute in Ra'anana, under the direction of Professor T. Najenson.

At Technion, we did more strain plethysmography work along with Joseph Mizrahi, Ph.D. We confirmed the preliminary work that Dr. Karni and I had begun in Michigan. This work was published in a journal produced by the Julius Silver Institute of Biomedical Engineering Sciences at the Technion Institute in Haifa, Israel, in April 1980.

At the Neurological Institute in Ra'anana, I was asked to evaluate several comatose and/or paralyzed patients from a craniosacral point of view. All my findings on extremities were positively confirmed by Dr. Mizrahi with his plethysmograph. The results were as follows:

1. Four cases of long-standing coma secondary to anoxia displayed craniosacral rhythms of 3-4 cycles per minute all over the body.

2. Two cases of long-standing coma due to drug overdose displayed rhythms of 10-25 cycles per minute all over the body.

3. One case of poliomyelitis with secondary residual paraplegia displayed palpable craniosacral rhythms of 24 cycles per minute in the paralyzed limbs and 10 cycles per minute in the rest of the body.

4. One case of Guillain Barre Disease displayed craniosacral rhythms of low amplitude 24 cycles per minute in paralyzed lower extremities, and low amplitude 6 cycles per minute above the paralysis.

5. Seven cases of spinal cord injury displayed craniosacral rhythm of 7-10 cycles per minute on the head and body above the cord injury, and 18-26 cycles per minute below the cord injury. These determinations were made by palpation of the paravertebral muscles. I was able to accurately localize the level of the spinal-cord injury in this way with no knowledge of this level of...
injury from other sources. The patients were prone in bed when I examined them.

6. One case of long-standing coma due to cerebral hemorrhage with secondary left-sided hemiplegia displayed a craniosacral rhythm on the hemiplegic side of 25 cycles per minute. On the normal side it was 8 cycles per minute. The craniosacral activity on the patient's head was disorganized and confused. It was not countable because it made several erratic changes each minute as we attempted to count.

As an interesting sidelight, while I was lecturing to the hospital staff in Haifa, it was brought to my attention by pointing out the fact that cranial sutures are not calcified, we had "reinvented the wheel." I was shown pages 202 and 203, Volume 1, in Anatomica Humana, 1931, written by Professor Giuseppe Sperino. He stated that cranial sutures only calcify before death under pathological circumstances. Apparently, Italian and British anatomists have a long-standing disagreement over this issue.

Shortly after my visit to Israel, Dr. Karni suffered a heart attack. I did not hear from him again until March 1985. At that time he was holding a visiting professor chair at the University of Southern California in Los Angeles. He informed me that he was ready to deliver lectures that would clearly define strains, pressures and rhythms inside the living skull. He stated that he had been working with the Neurosurgical Department at the University to accomplish this work. He wished to re-establish our collaborative effort because he was in a position to confirm my palpatory perceptions with his work.

I arranged a presentation for him at a Florida medical school to be given one month later. Two weeks from the time of our conversation, I received a call from Yoram Lanier, Ph.D., at the Technion Institute in Israel. Dr. Karni had died from a second heart attack a few days earlier. I still have the letter that Dr. Karni sent me explaining his findings and work.

During the time I was at Michigan State University, I was also privileged to be able to do dissections on unembalmed human and baboon heads. Our department was studying spinal ligament characteristics for the Air Force, and so we received one or two bodies each week. I was given the heads. I developed special dissection techniques that preserved the intracranial membrane system. With Yoram Lanier, Ph.D., a tissue expert in biomedical engineering on loan to us from the Technion Institute, we studied biochemical changes that resided in the intracranial dura mater membranes resultant of the fracturing of molecular bridges between collagen fibers in these membranes. We correlated these membranous strain patterns with skull shapes and deformities. The correlation enabled us to study membranes and predict sutural jamming, among other scenarios. This is a life's work for someone who is so inclined, but as a preliminary look, it proved to be fascinating. I'm not sure how you could set up a double-blind study or have a control group on this subject to satisfy the experimentalists.

It was in 1977 that I became aware of fascia hanging from the free border of the falk cerebi on many of my dissections. When I hit a tough attachment/area while removing the brain tissue, it finally occurred to me that it could not be damaging the falx cerebi with only the water irrigation and my gloved finger. I showed this tissue to Dr. Retzlaff who put it under his microscope. He informed me that this was a nerve tract running out of the falx cerebi with brain tissue attached to its free end. The brain tissue appeared to have elements of ventricular lining (ependymal cells) as a partial constituent. This was great. Perhaps we had a nerve tract from the sagittal suture to the ventricular system of the brain.

To study this, we injected horseradish peroxidase into the sagittal sutures of two live monkeys that pharmacology was about to sacrifice. Horseradish peroxidase is a dye that follows nerve tracts and stains them. Two days later the monkeys were sacrificed, and Dr. Retzlaff was able to trace the nerves from the monkeys' sagittal sutures into the ventricular systems of the monkeys' brains. This was the piece we needed to put together our Pressurestat Model for the mechanism of the craniosacral system's rhythmic activity.

Earlier, I mentioned the research at the Center for Autism. It went on for the first six months of 1978, 1979 and 1980. We did not publish our results simply because we were too busy doing the work to summarize it. We did find out that 10% CO₂ - 90% O₂ inhalation therapy 2x/day for 15 minutes quieted the autistic child. We did this because the autistic children all seemed to be shallow breathers. I wanted to activate the respiratory reflex and oxygenate their brains. We did nutritional counseling subsequent to the results of hair analysis and physical findings. Most of the children were in foster homes. It was clear that our counseling was not high priority to most of the foster parents. We did general bodywork and CranioSacral Therapy on the autistic children. We saw some remarkable behavioral improvements but they seemed temporary. Regressions occurred during our six months of down time each year. It was difficult to document change because we could find no independent specialist who seemed able to rate the behavior of autistic children in any way that resembled an objective quantitative manner that would lend itself to statistical analysis. We also used time-lapse photography at 0.1 sec. to record child movement in the classroom. This was done for two weeks. We found that when the barometer was in motion the children were more restless. We also saw that when the room temperature was about 72° F and the humidity was about 60%, the children were the most calm and cooperative. We also found with thermographic studies that we could warm their hands 2° or 3° C by doing the still-point induction technique used in CranioSacral Therapy. This latter observation suggests a relaxation response in the vasculature probably via induced sympathetic nervous system tone reduction.

All of the autistic children seemed to have very tight intracranial membrane systems, and none of them had more than two of the 19 parameters on my standardized examination form rated as normal motion. My impression was that there is great energy within the craniosacral system. This energy was trying to work against a membrane system that was too tight for the skull and brain, which were trying to expand with normal growth.

It seemed to me that something was preventing the meninges from accommodating the growth process that was being dictated genetically. Many things could do this. Perhaps that was why
the children that improved regressed when our treatment was interrupted. Perhaps the membranes needed our help in order to accommodate brain and skull growth.

The autistic children did educate me significantly about the process that we now call SomatoEmotional Release®. This topic is covered in the book SomatoEmotional Release and Beyond by John E. Upledger, D.O., F.A.A.O.

During the last year of our work at the Center for Autism, I wanted to test my feeling about tight membranes and their relationship to autism. Bernard Rimland, Ph.D., was at that time in the forefront of autism research. He had developed a scale for autism based on the appearance or lack of appearance of developmental landmarks. Dr. Rimland's scale was considered valid and reliable by the Department of Psychology at M.S.U. I contacted Dr. Rimland and requested that he allow me to examine blind some of the children that he had rated. He agreed and contacted parents, and I evaluated 63 of his rated children. I had to go to Detroit, Chicago and Columbus, Ohio, to do it, but we did it. Using my criteria of high energy and membranous restriction for autism, I came up with 85% agreement with the Rimland Scale for Autism. This confirmed my suspicions. I was also able to determine which children were schizophrenic rather than autistic. The schizophrenic child has low intrinsic energy and plenty of suppleness in the intracranial membrane system. This impression was supported by the Rimland Scale that also predicts schizophrenia. I did no further research with this approach; I simply did not have the time.

There is just one other piece of work I did that supports the existence of the craniosacral system. This was done on two fresh, unembalmed bodies at the Harvard Medical School Morgue. It was done with Cindy Rowe, P.T., who was instrumental in gaining us entry into the Morgue, and Neil Mohon, a physicist who came along to measure.

The brains of these fresh bodies were carefully removed through 2-inch square holes in each parietal bone. The intracranial membranes were kept intact. Our purpose was to see how much force on the skull and sacrum is required to move the intracranial membrane system. Mohon was in charge of membrane markers and force application. The heads of the bodies were stabilized and a fixed camera photographed the skull and the marked membranes through the parietal windows. On the unembalmed fresh body with no hydraulic force to assist, it required 48.2 grams of traction on the frontal bone to achieve perceptible falx cerebri marker movements. Although we did not measure the force, we could also move the falx cerebri by the application of light flexion force on the sacrum with the hand. Further, we found that we could palpate membrane tightening with a finger before the markers could be seen to move. We were able to move the tentorium cerebelli by the application of lateral traction on the ears. The traction was on the order of 60 grams.

This covers my involvement in research activities as they relate to the craniosacral system. On the other hand, one might say that since I have been perceiving craniosacral system activity for almost 25 years, this could be construed as ongoing research. Research may be defined as a careful systematic study usually undertaken in order to discover and/or establish facts and principles. I have gotten exceptionally good results with patients using CranioSacral Therapy, and I know that our Institute alone has trained more than 30,000 therapists in its use since its beginning in 1986, and I have files full of letters about its successful application to patient problems. I was teaching CranioSacral Therapy for over 10 years prior to founding The Upledger Institute, so I suspect that there are well over 20,000 persons perceiving craniosacral system activities on an almost daily basis. Personally, I think these experiences count for a lot, perhaps more than you can ever achieve in a controlled laboratory setting.

From what I have said previously, it is apparent that the craniosacral rhythm frequently comes to spontaneous stops, or still points. At these times, I suspect, it is readjusting itself. When we add our energy to that of the patient, the craniosacral system frequently takes advantage of this "energetic boost" in order to do self-correction that may often involve changes in rhythmical activity. All of us who do advanced CranioSacral Therapy know that emotion, significant body position, significant words and thoughts can all alter and/or stop the craniosacral rhythm temporarily.

One area of wonderment to observers of those practicing CranioSacral Therapy in action is how these therapists are able to locate problems in the peripheral body by the use of the craniosacral system's activity. Personally, I believe that the most likely answer to the whole-body response to the craniosacral system is via the effect of the rise and fall of cerebrospinal fluid (CSF) pressure within the meningeal compartment of the brain. The brain, in turn, rhythmically tones and relaxes the myofascial system via the motor nervous system. This effect is delicate and easily inhibited by connective tissue that is restricted and not able to respond to this gentle urging of the craniosacral system via the motor system. These restrictions are easily found by the skilled therapist practicing CranioSacral Therapy.

Now please allow me to briefly explain the Pressurestat Model that was developed at Michigan State University in order to illustrate the rhythmical activity of the craniosacral system. First, Dr. Retzlaff and I found the nerve plexuses in the human sagittal suture along with a variety of receptors that we believed would sense both compression and stretch of the intrasutural material. There were also many autonomic nerve networks that followed the intrasutural vasculature. The suture design would certainly allow small amounts of movement between bone surfaces. Then, in the monkeys, we found the nerve tract connections between the sagittal suture and the ventricular system of the brain. This ventricular system incorporates the choroid plexuses that manufacture or secrete cerebrospinal fluid. So at this point, we have a potential signaling system between the suture and the choroid plexuses. It seems reasonable that the intrasutural sensory receptors might signal a cessation of the production of cerebrospinal fluid, or CSF, to the choroid plexuses when the suture is expanded to the extent that the stretch receptors are activated. The sutureal expansion or intrasutural stretch would result from an increased volume/pressure of CSF within the meningeal boundaries of the cranial vault. After the CSF production has been stopped for some time, if the CSF is continually being reabsorbed into the venous system during the stoppage, the volume/pressure of CSF within the cranial vault would be
reduced so that initially the sutural expansion or intrasutural stretch would be alleviated. This event would be closely followed by sutural closing that would then compress the intrasutural contents. When this compression becomes sufficient to stimulate the intrasutural compression receptors, the signal would be sent down the nerve tracts to the ventricular system of the brain and cause the choroid plexuses to reinitiate CSF production. This resumption of CSF production first results in a decompression suture and then a re-expansion to the point of restimulating the stretch receptors that in turn signal the choroid plexuses to shut off CSF production. The cycle repeats.

In order to mock up a "normal" 10-cycle-per-minute craniosacral system rhythmical activity, we must allot six seconds for each complete cycle of filling and partial emptying. If the rate of CSF production by the choroid plexuses is twice as fast as the rate of reabsorption of CSF back into the venous circulation, we would have three seconds for the production of CSF and three seconds for nonproduction of CSF. Assuming the rate of absorption by the arachnoid granulation bodies to be relatively constant, this would give us the reasonably symmetrical three seconds of expansion of the system followed by three seconds of contraction that we seem to feel with our hands under average circumstances.

Remember, this is just a model that could explain some of the events that occur within the craniosacral system as we have thus far perceived them. A model is open to modification and change as new information is brought to light. Thus far, the Pressurestat Model remains useful.

In closing, I would state that I have spent a total of 11 years as a professional researcher, three years in biochemistry and eight years in biomechanics. I have worked very closely with some true experts in the field of research. I am convinced by experience that we should not allow experimental design to fetter human intelligence, nor should we allow it to stifle creativity. I have also served for five years on the American Osteopathic Association's Bureau of Research, and am a former acting co-chairman of the Research Committee of the Advisory Panel for The Office of Alternative Medicine at the National Institutes of Health. I can clearly see a shift away from strict experimental design toward the acceptance of outcome studies. I have yet to see a perfectly designed research protocol involving human subjects. Over the years, I have come to realize that controlling all of the variables in a study that involves human beings is not possible. If you think you can do it, I believe that you are either eluding or deluding yourself. It is true that the evidence which supports the craniosacral system has some holes in it. However, to follow the suggestion that CranioSacral Therapy not be used because of these vacancies in its scientific support would be to deprive thousands of patients of their chances to heal. CranioSacral Therapy, when practiced with a mild degree of prudence, is virtually risk-free, and it possesses the potential for great help. The outcomes demonstrate these facts. Why not use it? We still use gravity and electricity even though we have gaps in our understanding of how they work.

In the words of Rudolph Virchow, the highly honored German pathologist, "Absence of proof does not necessarily demonstrate proof of absence."
A Summary of the Research That Supports the Existence of a Craniosacral System

Arbuckle, B., Cranial Reinforcement From a Manipulative Standpoint; Articulations, Stress Bands, Buttresses. JAOA. 1949; 49:188-94.
Arbuckle, B., Through the Cranial Base. JAOA. May 1949; 48:458-60.
Arbuckle, B., Collected Writings
Arnold, W., Iberg, C.V., Connections of the Cerebrospinal Fluid With the Lymphatic System of Head & Neck.
Frankfurt, West Germany: Johann Wolfgang Goethe Universitat.
Baker, E.G., Alteration in Width of Maxillary Arch and its Relation to Sutural Movement of Cranial Bones. JAOA. February 1971; 70: 559-64.
Cathie, A.G., Growth and Nutrition of the Body With Special Reference to the Head. AAO Yearbook. 1962; 149-53.
Cope, M.K., Dunlap S.H., Calibration of a Device for the Measurement of the CRI. JAOA. September 1983; 83: 69-RES.

John E. Upledger, D.O., O.M.M.

Frymann, V.M., Core Link and the Three Diaphragms - Unit for Respiratory Function. AAO Yearbook. 1968; 13-19.

Frymann, V.M., Cranial Anatomy and Motions. [Videotape, color, 35 min.] KCOM-AV-Dept., #33-4, 10-26-72.

Frymann, V.M., Cranial Osteopathy. [Audiotapes, 2 hrs.] KCOM-AV-Dept., #97, 10-25-72.

Frymann, V.M., Expanding Osteopathic Concept. Published by the Cranial Academy; 1960 (Out of print).

Frymann, V.M., Sacral Motions. [Videotape, color, 3 min.] KCOM-AV-Dept., #53-4, 10-26-72.

Johnstone, E.D., Cranial Motion. (Historical interview with Sutherland) KCOM Library; June 1947.
Kimberly, P.E., Modus Operandi of Cranial Lesions. *AAO Yearbook.* 1951; 139-142.
Kimberly, P.E., Outline of the Cranial Concept. 2nd ed. Published by the Author, 1950 (out of print).
Klemmons, I.M., Chronic Head and Facial Pain and Dysfunction: Their Interrelationships, Diagnosis, and Treatment by Mandibular Orthopedic Repositioning. Penn State Univ.; 1981; Ph.D. Thesis.
Lippincott, R.C., Lippincott HA. *Compression of the Cordular Parts of the Occiput.* W. G. Sutherland, St. Peter, MN Free Press, Mankato, Minn.; 1945.
Magoun, H.L., *As the Twig is Bent*. Sutherland Cranial Teaching Foundation; 1959.

John E. Upledger, D.O., O.M.M.
Magoun, H.I., Clinical Application of the Cranial Concept. JAOA. April 1948; 47:413-15.
Magoun, H.I., Dental Equilibration and Osteopathy. JAOA. June 1975; 74:981-91.
Magoun, H.I., Dental Search for a Common Denominator in Craniosacral Pain and Dysfunction. JAOA. July 1979; 78:810.
Magoun, H.I., Glossary of Terms Relating to Osteopathy in the Cranial Field. Sutherland Cranial Teaching Foundation; 1961.
Magoun, H.I., Osteopathy in the Cranial Field. 3rd ed. Cranial Academy; 1976.
Magoun, H.I., Trauma — A Neglected Cause of Cephalgia. JAOA. January 1975; 74:400-10.
Magoun, H.I., Work of Our Hands. Sutherland Cranial Teaching Foundation; 1959.
Page, E., Diagnosis of Intracranial Lesions (case). JAOA. September 1926; 26:56.
Reid, C.C., Cranial as Related to Eye, Ear, Nose & Throat. JAOA. April 1948; 48:428-21.

Sutherland, W.G., *Science of Osteopathy*. [Original lectures on 78 records transcribed to audiotapes; Record 1: 36 min; Record 2: 32 min; Record 3: 31 min; Record 4: 31 min.] KCOM-VA-Vent, #191, 6-2-80.

John E. Upledger, D.O., O.M.M.

